Reducing carbon emissions in the architectural design process via transformer with cross-attention mechanism

Author:

Li HuaDong,Yang Xia,Zhu Hai Luo

Abstract

IntroductionThe construction industry is one of the world’s largest carbon emitters, accounting for around 40% of total emissions. Therefore, reducing carbon emissions from the construction sector is critical to global climate change mitigation. However, traditional architectural design methods have some limitations, such as difficulty in considering complex interaction relationships and a large amount of architectural data, so machine learning can assist architectural design in improving design efficiency and reducing carbon emissions.MethodsThis study aims to reduce carbon emissions in the architectural design by using a Transformer with a cross-attention mechanism model. We aim to use machine learning methods to generate optimized building designs that reduce carbon emissions during their use and construction. We train the model on the building design dataset and its associated carbon emissions dataset and use a cross-attention mechanism to let the model focus on different aspects of the building design to achieve the desired outcome. We also use predictive modelling to predict energy consumption and carbon emissions to help architects make more sustainable decisions.Results and discussionExperimental results demonstrate that our model can generate optimized building designs to reduce carbon emissions during their use and construction. Our model can also predict a building’s energy consumption and carbon emissions, helping architects make more sustainable decisions. Using Transformers with cross-attention mechanism models to reduce carbon emissions in the building design process can contribute to climate change mitigation. This approach could help architects better account for carbon emissions and energy consumption and produce more sustainable building designs. In addition, the method can also guide future building design and decision-making by predicting building energy consumption and carbon emissions.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3