Potential Futures for Coastal Wolves and Their Ecosystem Services in Alaska, With Implications for Management of a Social-Ecological System

Author:

Gilbert Sophie L.,Haynes Trevor,Lindberg Mark S.,Albert David M.,Kissling Michelle,Lynch Laurel,Person Dave

Abstract

Carnivores across much of the world are declining, leading to loss of biodiversity as well as the ecosystem services carnivores provide. In 2020, the Alexander Archipelago (AA) wolf was petitioned for protection under the U.S. Endangered Species Act (ESA) for the third time in 30 years. Concerns included habitat alteration from industrial timber harvest and subsequent declines in prey (deer), human-caused mortality, climate change, and genetic inbreeding. However, the underlying biogeography and ecology of these wolves continues to suggest resiliency across the subspecies’ range, even though local populations may go extinct. If local wolf populations go extinct, it will result in loss of their ecosystem services (e.g., interactions of wolves with their prey, which prevents over-browsing and protects carbon sequestration in soils and trees), which will likely have major consequences for the local social-ecological system. Here, we updated a model we constructed for the last ESA listing process (2015) to examine the dynamics of wolf and deer populations on Prince of Wales Island (the primary geographic focus of all three petitions) in response to future environmental and management scenarios developed with stakeholders. Further, we considered how changes in deer abundance impact predation services (prevention of over-browsing by deer). We found that wolf populations generally persisted over 30 years, but dropped below an effective population size of 50 wolves in 10–98% of years simulated. Low wolf abundance resulted in higher deer abundance, which increased hunting opportunity, but also browsing damages (e.g., 19% of areas would be over-browsed if wolf harvest caps are removed, and >30% of areas would be over-browsed if wolves go extinct). Human harvest of wildlife was a key regulator of abundance and ecosystem services within the coastal rainforest social-ecological system; wolf abundance was most affected by wolf harvest regulations; and deer harvest restrictions increased wolf and deer abundances, but also greatly increased browsing impacts (>70% of areas heavily browsed if hunting ceased). Our findings support an integrated approach to management of this social-ecological system, such that social and ecological sciences are both used to monitor important components of the system (e.g., measuring public sentiment and likelihood of poaching, alongside wolf and deer numbers). Integration and adaptive approaches are needed to ensure that the many ecosystem services humans depend on are valued, conserved, and restored, including the cryptic predation services wolves have historically provided to the timber industry via reduced browsing pressure by deer.

Funder

U.S. Fish and Wildlife Service

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference104 articles.

1. Dynamics of understory biomass in Sitka spruce-western hemlock forests of southeast Alaska.;Alaback;Ecology,1982

2. Disturbance ecology of the temperate rainforests of Southeast Alaska and adjacent British Columbia;Alaback;North Temperate Rainforests: Ecology and Conservation,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3