Temporal stability of δ2H in insect tissues: Implications for isotope-based geographic assignments

Author:

Lindroos Eve E.,Bataille Clément P.,Holder Peter W.,Talavera Gerard,Reich Megan S.

Abstract

Hydrogen isotope geolocation of insects is based on the assumption that the chitin in the wings of adult migratory insects preserves the hydrogen isotope composition (δ2H) of the larval stages without influence of adult diet. Here, we test this assumption by conducting laboratory feeding experiments for monarch butterflies (Danaus plexippus) including: (1) a starvation treatment where adults were not fed and (2) an enriched treatment where adults were fed a diet isotopically enriched in deuterium (~ +78‰) compared to the larval diet. The δ2H values of adult wings were measured at different time steps along the 24-day experiment. We also investigated intra-wing differences in δ2H values caused by wing pigmentation, absence of wing scales, and presence of major wing veins. We conclude that, although the magnitude of the changes in δ2H values are small (~6‰), wing δ2H values vary based on adult diet and insect age, particularly early after eclosion (i.e., 1–4 days). We found that wing shade, wing pigmentation, and the presence of wing scales do not alter wing δ2H values. However, wing samples containing veins had systematically higher δ2H values (~9‰), suggesting that adult diet influences the hemolymph that circulates in the wing veins. We hypothesise that there is a stronger influence of adult diet on the isotope signal of wings during early adult life relative to later life because of increased metabolic and physiologic activity in young insect wings. We argue that the influence of the isotopic contribution of adult diet is generally small and is likely minimal if the wings are carefully sampled to avoid veins. However, we also demonstrated that wings are not inert tissues, and that adult feeding contributes to some of the intra-population δ2H variance. We conclude that δ2H geolocation using insect wings remains valid, but that adult feeding, butterfly age and wing vein sampling generate an inherent uncertainty limiting the precision of geolocation.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3