Enhanced suppression of saprotrophs by ectomycorrhizal fungi under high level of nitrogen fertilization

Author:

Liang Shuang,Wang Wei,Zeng Xiaoyue,Wu Ran,Chen Weile

Abstract

Ectomycorrhizal fungi (EMF) are widespread in northern conifer forests. By competing with the free-living saprotrophic fungal and bacterial communities for limited soil nitrogen, EMF are expected to suppress litter decomposition and thus drive soil carbon accumulation. The EMF may also stimulate rhizosphere microbial growth through inputs of labile plant carbon, and subsequently contribute to the soil carbon pool via microbial necromass. Here we examined the relative strength of these two potential EMF effects in a northern conifer plantation of the Saihanba Forest, the largest plantation in China. The soil fungal and bacterial biomass, as well as their respiration, were quantified within the two types of soil cores that either allow or exclude the ingrowth of EMF. We also set up a nitrogen fertilization gradient (0, 5, 10, 15 g N m–2 y–1) in this plantation to quantify the influence of external inorganic nitrogen on the EMF effects. We found evidence that EMF inhibit the overall fungal and bacteria biomass, confirming the suppression of saprotrophs by EMF. In addition, high levels of external nitrogen fertilization (15 g N m–2 y–1) might further enhance the suppression by EMF. In contrast, the presence of EMF consistently increased soil microbial respiration across all nitrogen fertilization levels, indicating that the carbon allocated to EMF could have been largely consumed by microbial respiration and contributed minimally to the accumulation of microbial biomass. Our results also indicated that the suppression of saprotrophs by EMF may play a critical role in driving continuous soil carbon accumulation in this northern pine plantation under atmospheric nitrogen deposition.

Funder

National Natural Science Foundation of China

Zhejiang University

Science Fund for Distinguished Young Scholars of Zhejiang Province

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3