Effect of cadmium and lead on the morphology and protein profile of Calligonum comosum seeds

Author:

Alotaibi Modhi O.

Abstract

BackgroundSoils contaminated with heavy metals (HMs) pose a risk to human health via the food chain, as many edible plants absorb these metals. In turn, some of these plants could be used as phytoremediators for such soils. Calligonum comosum is an indigenous medicinal shrub that grows naturally in wide swaths of sandy soil in Saudi Arabia and has many advantages that render it a promising candidate for the treatment of HM-contaminated areas. But the impact of HM on this plant remains unknown, especially in the early stages of its development.ObjectiveThis investigation aimed to study the effects of lead (Pb) and cadmium (Cd) on the germination of C. comosum seeds under laboratory conditions, and assess the seeds’ response to these metals.MethodsThe C. comosum seed germination was monitored in Petri dishes containing Pb and Cd at increasing concentrations (25, 50, 75, and 100 µM) for up to 3 weeks. SDS-PAGE was used to examine the protein profile of germinated seeds and the western blot was used to assess the influence of HMs on the activities of the catalase enzyme and the beta subunit of ATP synthase (AtpB).ResultsThe germination rate and speed of C. comosum seeds were delayed by increasing concentrations of either Pb or Cd, but this effect was dose-dependent. SDS-PAGE analysis results revealed that exposure to both metals led to altered protein profiles as indicated by the resulting band intensities and disappearance of some proteins compared with the untreated controls. Further, the western blot analysis detected greater activity of catalase enzyme as well as AtpB in the Cd- and Pb-treated seeds.ConclusionC. comosum seeds treated with Cd or Pb enhance protein degradation and denaturation beside oxidative stress, leading to reduced seed viability. These results suggest oxidoreduction proteins and those involved in ATP synthesis are enhanced in C. comosum seeds in response to Cd and Pb stressors, which is a probable mechanism by which seeds may tolerate heavy metal stress.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3