New mitogenomes in deep-water endemic Cocculinida and Neomphalida shed light on lineage-specific gene orders in major gastropod clades

Author:

Zhong Zhaoyan,Lan Yi,Chen Chong,Zhou Yadong,Linse Katrin,Li Runsheng,Sun Jin

Abstract

Gastropoda is the most speciose class in Mollusca, the second largest animal phylum. The internal relationships of major gastropod groups remain largely unsettled, partly due to the insufficient data from key deep-water endemic lineages such as the subclass Neomphaliones. Neomphaliones currently includes two orders: Cocculinida, best known from sunken wood habitats, and Neomphalida, best known from hydrothermal vents and often referred to as the “hot vent clade.” Phylogenetic controversy has also been observed in this subclass across different studies, requesting additional investigations. Here, we assembled nine new mitogenomes from two Cocculinida and seven Neomphalida species and analyzed them with published gastropod mitogenomes, with a particular focus on Neomphaliones. The phylogenetic reconstruction of Gastropoda based on 13 mitochondrial protein-coding genes resulted in a topology largely congruent with previous reconstructions based on morphological characters. Furthermore, we recovered characteristic mitochondrial gene order arrangements of Cocculinida and Neomphalida compared to the hypothetical ancestral gastropod gene order, at a level similar to other subclass-level clades. Divergence time estimation showed that Cocculinida and Neomphalida diverged approximately 322.68 million years ago. In addition to characteristic gene order arrangements for the clade, Cocculinida mitogenomes also exhibit some minor rearrangements even among congeners. Within Neomphalida, our tree adds support to monophyletic Peltospiridae and Neomphalidae, with unique gene arrangement recovered for each family. Our results offer new insights into the rearrangement of mitogenomes in Gastropoda, providing another clue to the evolutionary history of gastropods.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3