Abstract
Floral pigments are a core component of flower colors, but how much pigment a flower should have to yield a strong visual signal to pollinators is unknown. Using an optical model and taking white, blue, yellow and red flowers as case studies, I investigate how the amount of pigment determines a flower’s color contrast. Modeled reflectance spectra are interpreted using established insect color vision models. Contrast as a function of the amount of pigment shows a pattern of diminishing return. Low pigment amounts yield pale colors, intermediate amounts yield high contrast, and extreme amounts of pigment do not further increase, and sometimes even decrease, a flower’s color contrast. An intermediate amount of floral pigment thus yields the highest visibility, a finding that is corroborated by previous behavioral experiments on bees. The implications for studies on plant-pollinator signaling, intraspecific flower color variation and the costs of flower color are discussed.
Subject
Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献