A new system to study directional volatile-mediated interactions reveals the ability of fungi to specifically react to other fungal volatiles

Author:

Bruisson Sébastien,Alfiky Alsayed,L'Haridon Floriane,Weisskopf Laure

Abstract

Microbes communicate with each other using a wide array of chemical compounds, including volatile organic compounds (VOCs). Usually, such volatile-mediated interactions are studied by growing two different microbes in a shared, confined environment and by subsequently collecting and analyzing the emitted VOCs by gas chromatography. This procedure has several drawbacks, including artificial volatile overaccumulation and potential oxygen limitation, as well as the impossibility to assign a producer to the compounds newly emitted during the interaction. To address these challenges, we have developed a novel system specifically designed to analyze volatile-mediated interactions allowing for sequential unidirectional exposure of a “receiver” microorganism to the VOCs of an “emitter” microorganism. Using hermetically sealed systems connected to an air compressor, a constant unidirectional airflow could be generated, driving emitted volatiles to be absorbed by a collection charcoal filter. Thus, our developed system avoids artificial overaccumulation of volatile compounds and lack of oxygen in the headspace and enables the univocal assignment of VOCs to their producers. As a proof of concept, we used this newly developed experimental setup to characterize the reaction of plant growth-promoting and biocontrol fungus (Trichoderma simmonsii) to the perception of VOCs emitted by two plant pathogens, namely Botrytis cinerea and Fusarium oxysporum. Our results show that the perception of each pathogen's volatilome triggered a specific response, resulting in significant changes in the VOCs emitted by Trichoderma. Trichoderma's volatilome modulation was overall stronger when exposed to the VOCs from Fusarium than to the VOCs from Botrytis, which correlated with increased siderophore production when co-incubated with this fungus. Our newly developed method will not only help to better understand volatile-mediated interactions in microbes but also to identify new molecules of interest that are induced by VOC exposure, as well as the putative-inducing signals themselves.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3