Form and Function Predict Acoustic Transmission Properties of the Songs of Male and Female Canyon Wrens

Author:

Benedict Lauryn,Hardt Braelei,Dargis Lorraine

Abstract

To function effectively, animal signals must transmit through the environment to receivers, and signal transmission properties depend on signal form. Here we investigated how the transmission of multiple parts of a well-studied signal, bird song, varies between males and females of one species. We hypothesized that male and female songs would have different transmission properties, reflecting known differences in song form and function. We further hypothesized that two parts of male song used differentially in broadcast singing and aggressive contests would transmit differently. Analyses included male and female songs from 20 pairs of canyon wrens (Catherpes mexicanus) played and re-recorded in species-typical habitat. We found that male song cascades used in broadcast singing propagated farther than female songs, with higher signal-to-noise ratios at distance. In contrast, we demonstrated relatively restricted propagation of the two vocalization types typically used in short-distance aggressive signaling, female songs and male “cheet” notes. Of the three tested signals, male “cheet” notes had the shortest modeled propagation distances. Male and female signals blurred similarly, with variable patterns of excess attenuation. Both male song parts showed more consistent transmission across the duration of the signal than did female songs. Song transmission, thus, varied by sex and reflected signal form and use context. Results support the idea that males and females of the same species can show distinctly different signal evolution trajectories. Sexual and social selection pressures can shape sex-specific signal transmission, even when males and females are communicating in shared physical environments.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3