Soil and Climate Drive Floristic Composition in Tropical Forests: A Literature Review

Author:

Bañares-de-Dios Guillermo,Macía Manuel J.,de Carvalho Gabriel Martins,Arellano Gabriel,Cayuela Luis

Abstract

A vast literature indicates that environment plays a paramount role in determining floristic composition in tropical forests. However, it remains unclear which are the most important environmental factors and their relative effect across different spatial scales, plant life forms or forest types. This study reviews the state of knowledge on the effect of soil and climate on floristic composition in tropical forests. From 137 publications, we collated information regarding: (1) spatial scale, continent, country, life form, and forest type; (2) proportion of variance in floristic composition explained by soil and climatic variables and how it varies across spatial scales; and (3) which soil and climate variables had a significant relationship on community composition for each life form and forest type. Most studies were conducted at landscape spatial scales (67%) and mainly in South America (74%), particularly in Brazil (40%). Studies majorly focused on trees (82%) and on lowland evergreen tropical forests (74%). Both soil and climate variables explained in average the same amount (14% each) of the variation observed in plant species composition, although soils appear to exert a stronger influence at smaller spatial scales while climate effect increases toward larger ones. Temperature, precipitation, seasonality, soil moisture, soil texture, aluminum, and base cations—calcium and magnesium–and their related variables (e.g., cation exchange capacity, or base saturation) were frequently reported as important variables in structuring plant communities. Yet there was variability when comparing different life forms or forest types, which renders clues about certain ecological peculiarities. We recommend the use of standardized protocols for collecting environmental and floristic information in as much as possible, and to fill knowledge gaps in certain geographic regions. These actions will be especially beneficial to share uniform data between researchers, conduct analysis at large spatial scales and get a better understanding of the link between soils and climate gradients and plant strategies, which is key to propose better conservation policies under the light of global change.

Funder

Comunidad de Madrid

Ministério da Ciência e Tecnologia

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference116 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3