Assessing the Spatiotemporal Heterogeneity of Terrestrial Temperature as a Proxy to Microclimate and Its Relationship With Urban Hydro-Biophysical Parameters

Author:

Mallick Javed,Alsubih Majed,Ahmed Mohd.,Almesfer Mohammed K.,Kahla Nabil Ben

Abstract

Rapid urban land use and land cover changes have become a major environmental issue because of their ecological effects, including loss of green space and urban heat islands. Effective monitoring and management techniques are required. The Saudi Arabian twin city of Abha-Khamis Mushyet was selected as a case study for this research. As a result, the current study aimed to statistically and spatially investigate the relationship between land surface temperature (LST) and land use land cover based urban biophysical parameters such as normalized difference built-up index (NDBI), normalized difference vegetation index (NDVI), and normalized difference water index (NDWI). This study used random forest (RF) to classify LULC in 1990, 2000, and 2018. We also validated the LULC maps in a novel way. Using mono window algorithm techniques, we extracted LST for three periods. The dynamics of LULC, LST, and biophysical parameters were investigated using standard statistical graphs such as the heat map and the Sankey diagram. The correlation coefficient and the global bivariate Moran’ I approach were used to determine the association between LST and urban biophysical parameters. The relationship was then established in greater detail by categorizing the entire pixel into percentile classes and employing parallel coordinate plots. Finally, the association was built using GeoDA software and a conditional map. The LULC maps revealed a 334.4 percent increase in urban areas between 1990 and 2018. The built-up region is the largest stable LULC, with an 83.6 percent transitional probability matrix between 1990 and 2018. While 17.9%, 21.8%, 12.4%, and 10.5% of agricultural land, scrubland, exposed rocks, and water bodies were converted to built-up areas, respectively. The LST has increased rapidly over time because of LULC changes. The link between LST and urban biophysical parameters revealed that NDBI had a positive relationship, whereas NDWI and NDVI had a negative relationship. As a result, this study could be very important because it could help decision makers figure out how to lessen the effects of urban heat islands because of changes in LULC.

Funder

Ministry of Education – Kingdom of Saudi Arabi

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3