Successional development of the phototrophic community in biological soil crusts, along with soil formation on Holocene deposits at the Baltic Sea coast

Author:

Kammann Sandra,Leinweber Peter,Glaser Karin,Schiefelbein Ulf,Dolnik Christian,Mikhailyuk Tatiana,Demchenko Eduard,Heilmann Elena,Karsten Ulf

Abstract

Harsh environmental conditions form habitats colonized by specialized primary microbial colonizers, e.g., biological soil crusts (biocrusts). These cryptogamic communities are well studied in drylands but much less in temperate coastal dunes, where they play a crucial role in ecological functions. Following two dune chronosequences, this study highlights the successional development of the biocrust’s community composition on the Baltic Sea coast. A vegetation survey, followed by morphological species determination, was conducted. Sediment/soil cores of the different dune types were analyzed to uncover the potential impacts of the biocrust community on initial soil formation processes, with special emphasis on biogeochemical phosphorous (P) transformations. Biocrust succession was characterized by a dune type-specific community composition, shifting from thinner algae-dominated biocrusts in dynamic dunes to more stable moss-dominated biocrusts in mature dunes. The change in the biocrust community structure was accompanied by an increase in Chl a, water, and organic matter content. In total, 25 algal and cyanobacterial species, 16 mosses, and 26 lichens across all sampling sites were determined. The pedological characterization of these cores elucidated initial processes of soil genesis, such as decalcification, acidification, and the accumulation of organic matter with dune and biocrust development. Furthermore, the chemistry of iron (Fe)-containing compounds such as the Fedithionite/Fetotal ratios confirmed mineral weathering and the beginning of soil profile development. The biocrusts accumulated P over time, while the P content in the underlying sediment did not change. That implies that biocrusts take up P from the geological parent material in the dunes, thereby accumulating available P in the ecosystem, which gets transferred into subsoil horizons through leaching or redeposition. The relative proportion of the bioavailable P pool (56% to 74% of Pt) increased with dune succession. That happened at the expense of more stable bound P, which was transformed into labile P. Thus, the level of plant available P along the dune chronosequences increased due to the microbial activity of the biocrust organisms. It can be concluded that biocrusts of temperate coastal dunes play a crucial role in maintaining their habitat by accumulating nutrients and organic matter, supporting soil development and subsequent vegetation.

Funder

Universität Rostock

Leibniz-WissenschaftsCampus Phosphorforschung Rostock

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3