Integrated photovoltaic storage joint smoothing strategy based on simultaneous perturbation stochastic approximation algorithm

Author:

Yujing He,Jie Chen,Xueqin Tian,Yafei Wang

Abstract

In order to realize the real-time control of photovoltaic power generation smoothly connected to the grid under the condition that the energy storage equipment can operate safely, a control strategy combining the simultaneous perturbation stochastic approximation (SPSA) algorithm with rule control is designed. Firstly, the photovoltaic data are processed to extract the data characteristics of the power ramp, and then the grid-connected reference power is obtained through SPSA algorithm. Secondly, considering the state of charge (SOC) of energy storage equipment and the safe operating power range of hydrogen storage equipment, 24 hybrid energy storage power allocation rules are formulated by using the rule control method. Finally, according to the sampling data of every 10 s interval in typical day, the simulation is carried out on MATLAB/simulink platform. The results show that, compared with the first-order low-pass filtering algorithm and recursive fuzzy neural network (RFNN) algorithm, the SPSA algorithm has stronger smoothing ability, and the rule control can also complete the allocation according to the characteristics of the hybrid storage device while ensuring its normal operation.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrolyzers for H 2 Production;Towards Green Hydrogen Generation;2024-08-30

2. Hydrogen energy storage integrated grid: A bibliometric analysis for sustainable energy production;International Journal of Hydrogen Energy;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3