Agricultural Greenhouse Gas Fluxes Under Different Cover Crop Systems

Author:

Wang Yanyu,Saikawa Eri,Avramov Alexander,Hill Nicholas S.

Abstract

Cultivated lands that support high productivity have the potential to produce a large amount of GHG emissions, including carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). Intensive land management practices can stimulate CO2, N2O, and CH4 emissions from the soil. Cover crop establishment is considered as one of the sustainable land management strategies under warm and humid environmental conditions. To better understand how the incorporation of cover crops affect three major GHGs, we compared trace gas fluxes in a no-till maize field over the whole growing season in 2018 in a no cover crop (Tr) system and three cover crop systems: crimson clover (CC), cereal rye (CR), and living mulch (LM) using white clover. In 2019, we further explored potential differences in the three GHGs between in-row (IR) and between-row (BWR) of maize for LM and Tr systems during the early growing season. Measurements were taken using a cavity ring-down spectroscopy gas analyzer in Watkinsville, GA. In 2018, the highest CO2 flux (7.00 μmol m−2 s−1) was observed from BWR of maize for LM. The maximum N2O flux observed in LM on June 20th in 2018 was when soil N increase rate was the largest. Soils served as sinks for CH4 and Tr system served as the smallest CH4 sink compared to the other three cover crop systems. For N2O, the highest fluxes were observed from the TrIR plot (4.13 μmol m−2 hr−1) in 2019 with the greatest N inputs. In 2019, we observed a smaller CH4 sink in TrIR (−0.13 μmol m−2 hr−1) compared to TrBWR (−0.67 μmol m−2 hr−1) due potentially to greater NH4+ inhibition effects on CH4 consumption from greater N fertilizer inputs. The net carbon equivalent (CE) from May 23rd to Aug 16th in 2018, taking into account the three GHG fluxes, soil carbon content, and fertilizer, irrigation, and herbicide application, were 32–97, 35–101, 63–139, and 40–106 kg ha−1 yr−1 for CC, CR, LM, and Tr, respectively. LM had the lowest net CE after removing white clover respiration (−16–60 kg ha−1 yr−1). Our results show that implementing different types of cover crop systems and especially the LM system have some potential to mitigate climate change.

Funder

U.S. Department of Agriculture

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3