Assessing compounding risks across multiple systems and sectors: a socio-environmental systems risk-triage approach

Author:

Schlosser C. Adam,Frankenfeld Cypress,Eastham Sebastian,Gao Xiang,Gurgel Angelo,McCluskey Alyssa,Morris Jennifer,Orzach Shelli,Rouge Kilian,Paltsev Sergey,Reilly John

Abstract

Physical and societal risks across the natural, managed, and built environments are becoming increasingly complex, multi-faceted, and compounding. Such risks stem from socio-economic and environmental stresses that co-evolve and force tipping points and instabilities. Robust decision-making necessitates extensive analyses and model assessments for insights toward solutions. However, these exercises are consumptive in terms of computational and investigative resources. In practical terms, such exercises cannot be performed extensively—but selectively in terms of priority and scale. Therefore, an efficient analysis platform is needed through which the variety of multi-systems/sector observational and simulated data can be readily incorporated, combined, diagnosed, visualized, and in doing so, identifies “hotspots” of salient compounding threats. In view of this, we have constructed a “triage-based” visualization and data-sharing platform—the System for the Triage of Risks from Environmental and Socio-Economic Stressors (STRESS)—that brings together data across socio-environmental systems, economics, demographics, health, biodiversity, and infrastructure. Through the STRESS website, users can display risk indices that result from weighted combinations of risk metrics they can select. Currently, these risk metrics include land-, water-, and energy systems, biodiversity, as well as demographics, environmental equity, and transportation networks. We highlight the utility of the STRESS platform through several demonstrative analyses over the United States from the national to county level. The STRESS is an open-science tool and available to the community-at-large. We will continue to develop it with an open, accessible, and interactive approach, including academics, researchers, industry, and the general public.

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3