Coordinated Implementation of Climate-Smart Practices in Coffee Farming Increases Benefits at Farm, Landscape and Global Scale

Author:

Schmidt Paul Günter,Bunn Christian

Abstract

Coffee is a major commodity crop that shapes large shares of tropical landscapes. However, the sustainability of these landscapes is threatened by climate change. Whilst adopting climate-smart (CS) practices clearly offers direct benefits to local farmers, their greater benefits at landscape and global scales has not been studied for specific commodity crops so far. Our research uniquely outlines how local adoption of CS-practices in coffee-farming systems provides local, landscape and global benefits. We review literature on CS agriculture, CS landscapes, and coffee farming to firstly identify the different CS-practices applicable to coffee farming systems, and then group these into functional groups that represent the main functional trait targeted by different practices within coffee-farming systems. This allows identifying benefits provided at local, landscape and global scales. The seven functional groups identified are: soil characteristics; water management; crop and genetic diversity; climate buffer and adjustment; crop nutrient management; structural elements and natural habitats; and system functioning. Benefits offered at landscape and global scales (non-exhaustively) include improved water quality, biodiversity conservation and habitat connectivity, as well as stabilized regional climate patterns. Our review shows that regulating services are especially pronounced, although the extent of benefits provided depend on landscape coordination. We discuss considerations for managing possible conflicts, coordinating actions, financing and accommodating lead time. Local farmers, policy-makers and global donors must unite to improve uptake of CS coffee-production practices in a coordinated way, to thereby augment and safeguard coffee-farming's socio-ecological system along with associated local, landscape and global benefits.

Publisher

Frontiers Media SA

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3