Understanding the Greenhouse Gas Impact of Deforestation Fires in Indonesia and Brazil in 2019 and 2020

Author:

Datta Aparajita,Krishnamoorti Ramanan

Abstract

Deforestation fires are hindering climate change mitigation efforts and compounding global environmental challenges. Indonesia and Brazil have experienced high rates of deforestation fires in recent years, with many of the fires burning in peatland-rich ecosystems. We quantify the greenhouse gas (GHG) emissions associated with the 2019 and 2020 deforestation fires in both countries and determine the share of emissions originating from peatlands. Specifically, we use publicly available data for deforested area estimates and quantify the above-ground biomass (AGB), dry matter, and peat soil emissions associated with these fires. We find that the cumulative emissions impact from deforestation fires in Indonesia and Brazil was 3.7 (±0.4) and 1.9 (±0.2) Gt CO2eq in 2019 and 2020, respectively. Nearly half of this GHG impact can be attributed to emissions from peatlands. However, real-time monitoring tools can underestimate these emissions as fires in peatlands smolder underground and can go undetected by satellites. We compare our results with publicly available land-use and fire emissions data and find that the magnitude of underestimation is of the order of 200–300% for severe fire years and highest in the peatland-rich Brazilian Pantanal. We identify the gaps in current policies that are exacerbating the GHG and climate impacts of deforestation fires in Indonesia and Brazil and emphasize the need for regular pre- and post-fire ground measurement, transparent data sharing, and robust policy enforcement for effective forest and peatland protection.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference54 articles.

1. Emission factors for open and domestic biomass burning for use in atmospheric models;Akagi;Atmos. Chem. Phys,2011

2. Biomass Burning-Its History, Use, and Distribution and Its Impact on Environmental Quality and Global Climate;Andreae,1991

3. “A comparison of concurrent airborne and ground based emissions generated from biomass burning in the Amazon Basin,”;Babbitt,1996

4. Tropical forest wood production: a cross-continental comparison;Banin;J. Ecol,2014

5. Improved tree height estimation of secondary forests in the Brazilian Amazon;Cassol;Acta Amazon,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3