Climate Change Impacts on Polar Marine Ecosystems: Toward Robust Approaches for Managing Risks and Uncertainties

Author:

Ottersen Geir,Constable Andrew J.,Hollowed Anne B.,Holsman Kirstin K.,Melbourne-Thomas Jess,Muelbert Mônica M. C.,Skern-Mauritzen Mette

Abstract

The Polar Regions chapter of the Intergovernmental Panel on Climate Change's Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) provides a comprehensive assessment of climate change impacts on polar marine ecosystems and associated consequences for humans. It also includes identification of confidence for major findings based on agreement across studies and weight of evidence. Sources of uncertainty, from the extent of available datasets, to resolution of projection models, to the complexity and understanding of underlying social-ecological linkages and dynamics, can influence confidence. Here we, marine ecosystem scientists all having experience as lead authors of IPCC reports, examine the evolution of confidence in observed and projected climate-linked changes in polar ecosystems since SROCC. Further synthesis of literature on polar marine ecosystems has been undertaken, especially within IPCC's Sixth Assessment Report (AR6) Working Group II; for the Southern Ocean also the Marine Ecosystem Assessment for the Southern Ocean (MEASO). These publications incorporate new scientific findings that address some of the knowledge gaps identified in SROCC. While knowledge gaps have been narrowed, we still find that polar region assessments reflect pronounced geographical skewness in knowledge regarding the responses of marine life to changing climate and associated literature. There is also an imbalance in scientific focus; especially research in Antarctica is dominated by physical oceanography and cryosphere science with highly fragmented approaches and only short-term funding to ecology. There are clear indications that the scientific community has made substantial progress in its ability to project ecosystem responses to future climate change through the development of coupled biophysical models of the region facilitated by increased computer power allowing for improved resolution in space and time. Lastly, we point forward—providing recommendations for future advances for IPCC assessments.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference78 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3