Projections of Future Marine Heatwaves for the Oceans Around New Zealand Using New Zealand's Earth System Model

Author:

Behrens Erik,Rickard Graham,Rosier Suzanne,Williams Jonny,Morgenstern Olaf,Stone Dáithí

Abstract

This paper investigates marine heatwave (MHW) characteristics in New Zealand's Earth System Model (NZESM) simulations for present-day conditions and how they are projected to change in the future in relation to anthropogenic greenhouse gas emissions. Three emission scenarios following the state of the art shared-socioeconomic pathways (SSPs, SSP1 2.6, SSP2 4.5, and SSP3 7.0) are each evaluated with a set of three ensemble members. These analyses are focused on the ocean around New Zealand, where NZESM captures boundary currents and mesoscale eddies, due to its high-resolution nested ocean grid. For present-day conditions, the model overestimates MHW intensity and underestimates the number of annual MHW days for subtropical waters, while some smaller positive biases are present in subantarctic waters compared to observations. Despite this, NZESM agrees with the observational pattern that more intense MHWs and more annual MHW days are found in subtropical waters compared to subantarctic waters. NZESM projects that MHW intensity will increase more strongly in subtropical waters compared to subantarctic waters, while the largest changes in annual MHW days are projected south of Australia and the Tasman Sea in the Subtropical Front (STF) frontal region, which suggests a southward shift of the STF under increased greenhouse gas emissions. Results using a high-emission scenario (SSP3 7.0) show an increase between 80 and 100% of median MHW intensities by the end of the century relative to the present-day for all analyzed coastal regions, and MHW conditions could become permanent year-round by the end of the century.

Publisher

Frontiers Media SA

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3