Wind power estimation on local scale—A case study of representativeness of reanalysis data and data-driven analysis

Author:

Schicker Irene,Ganglbauer Johanna,Dabernig Markus,Nacht Thomas

Abstract

IntroductionWith hydropower being the dominant source of renewable energy in Austria and recent years being disproportionally dry, alternative renewable energy sources need to be tapped to compensate for the reduction of fossil fuels and account for dry conditions. This becomes even more important given the current geopolitical situation. Wind power plays an essential role in decarbonizing Austria's electricity system. For local assessments of historic, recent, and future wind conditions, adequate climate data are essential. Reanalysis data, often used for such assessments, have a coarse spatial resolution and could be unable to capture local wind features relevant for wind power modeling. Thus, raw reanalysis data need post-processing, and the results need to be interpreted with care. The purpose of this study is to assess the quality of three reanalysis data sets, such as MERRA-2, ERA5, and COSMO-REA6, for both surface level and hub height wind speed and wind power production at meteorological observation sites and wind farms in flat and mountainous terrain. Furthermore, the study aims at providing a first knowledge baseline toward generating a novel wind speed and wind power atlas at different hub heights for Austria with a spatial resolution of 1 × 1 km and for an experimental region with sub-km resolution. Thus, the study tries to answer (i) the questions if the reanalysis and analysis data can reproduce surface-level wind speed and (ii) if wind power calculations based on these data can be trusted, providing a knowledge base for future wind speed and wind power applications in complex terrain.MethodsFor that purpose, a generalized additive model (GAM) is applied to enable a data-driven gridded surface wind speed analysis as well as extrapolation to hub heights as a first step toward generating a novel wind speed atlas. In addition, to account for errors due to the coarse grid of the re-analysis, the New European Wind Atlas (NEWA) and the Global Wind Atlas (GWA) are used for correction using an hourly correction factor accounting for diurnal variations. For the analysis of wind power, an empirical turbine power curve approach was facilitated and applied to five different wind sites in Austria.Results and discussionThe results showed that for surface-level wind speed, the GAM outperforms the reanalysis data sets across all altitude levels with a mean average error (MAE) of 1.65 m/s for the meteorological sites. It even outperforms the NEWA wind atlas, which has an MAE of 3.78 m/s. For flat regions, the raw reanalysis matches the production data better than NEWA, also for hub height wind speeds, following wind power. For the mountainous areas, a correction of the reanalysis data based on the NEWA climatology, or even the NEWA climatology itself, significantly improved wind power evaluations. Comparisons between modeled wind power time series and real data show mean absolute errors of 8% of the nominal power in flat terrain and 14 or 17% in mountainous terrain.

Funder

Österreichische Forschungsförderungsgesellschaft

Klima- und Energiefonds

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3