XCast: A python climate forecasting toolkit

Author:

Hall Kyle Joseph Chen,Acharya Nachiketa

Abstract

Climate forecasts, both experimental and operational, are often made by calibrating Global Climate Model (GCM) outputs with observed climate variables using statistical and machine learning models. Often, machine learning techniques are applied to gridded data independently at each gridpoint. However, the implementation of these gridpoint-wise operations is a significant barrier to entry to climate data science. Unfortunately, there is a significant disconnect between the Python data science ecosystem and the gridded earth data ecosystem. Traditional Python data science tools are not designed to be used with gridded datasets, like those commonly used in climate forecasting. Heavy data preprocessing is needed: gridded data must be aggregated, reshaped, or reduced in dimensionality in order to fit the strict formatting requirements of Python's data science tools. Efficiently implementing this gridpoint-wise workflow is a time-consuming logistical burden which presents a high barrier to entry to earth data science. A set of high-performance, easy-to-use Python climate forecasting tools is needed to bridge the gap between Python's data science ecosystem and its gridded earth data ecosystem. XCast, an Xarray-based climate forecasting Python library developed by the authors, bridges this gap. XCast wraps underlying two-dimensional data science methods, like those of Scikit-Learn, with data structures that allow them to be applied to each gridpoint independently. XCast uses high-performance computing libraries to efficiently parallelize the gridpoint-wise application of data science utilities and make Python's traditional data science toolkits compatible with multidimensional gridded data. XCast also implements a diverse set of climate forecasting tools including traditional statistical methods, state-of-the-art machine learning approaches, preprocessing functionality (regridding, rescaling, smoothing), and postprocessing modules (cross validation, forecast verification, visualization). These tools are useful for producing and analyzing both experimental and operational climate forecasts. In this study, we describe the development of XCast, and present in-depth technical details on how XCast brings highly parallelized gridpoint-wise versions of traditional Python data science tools into Python's gridded earth data ecosystem. We also demonstrate a case study where XCast was used to generate experimental real-time deterministic and probabilistic forecasts for South Asian Summer Monsoon Rainfall in 2022 using different machine learning-based multi-model ensembles.

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

Reference28 articles.

1. “PyELM-MME: a Python platform for extreme learning machine based multi-model ensemble,”;Acharya

2. “PyMME: A Python platform for multi-model ensemble climate predictions,”;Acharya

3. Multi-model ensemble schemes for predicting northeast monsoon rainfall over peninsular India;Acharya;J. Earth Syst. Sci

4. Performance of GCMs for seasonal prediction over India - A case study for 2009 monsoon;Acharya;Theor. Appl. Climatol

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3