Soil carbon stocks and nitrous oxide emissions of pasture systems in Orinoquía region of Colombia: Potential for developing land-based greenhouse gas removal projects

Author:

Costa Ciniro,Villegas Daniel M.,Bastidas Mike,Matiz-Rubio Natalia,Rao Idupulapati,Arango Jacobo

Abstract

Improving grassland conditions under grazing has the potential not only to accumulate carbon in soils, but also to reduce nitrous oxide (N2O) emissions from animal urine deposition. However, measurements in developing countries are still scarce. In the Orinoquia region, permanent grasslands (PG; this unimproved, native pasture is considered as at some state of degradation) based on unimproved grasses are found due to extensive, inefficient grazing combined with annual burning of pastures. We hypothesized that, compared to PG, improved grasslands (IG) managed through rotational grazing of introduced, productive and deep-rooted pasture grass species promote soil organic carbon (SOC) accumulation and reduce N2O emission from urine deposited by grazing cattle. We determined SOC and N2O emissions from urine deposited on soils in an area of PG and in a 6.5 year-old IG area of Urochloa (Syn. Brachiaria) humidicola grass pasture in a beef cattle ranch in Orinoquía region (Colombia). In both areas, we sampled soil for chemical/physical analysis, and measured N2O emissions by simulating urine deposition over 21 days. We applied two-way analysis of variance considering pasture type and soil depth as fixed factors. Estimated SOC stocks (0–100 cm) were in the range of 224.8 Mg C ha−1 for the PG and 259.0 Mg C ha−1 for the IG, with a significant (p < 0.05) average accumulation of 2.0 Mg C ha−1 y−1 (0–20 cm) in the IG area. N2O emissions were 10 times lower in the IG compared to the PG. The introduction of U. humidicola grass influenced SOC accumulation probably through its more abundant root system and greater turnover together with higher (14%) forage dry matter production compared to PG. The reduced N2O emissions observed from urine patches in IG were attributed to biological nitrification inhibition ability and greater nitrogen uptake of U. humidicola grass. Compared to the reference default value of IPCC for, the SOC stock found in PG was almost 40% higher, whereas the N2O emission factor (5%) was within the uncertainty range (0.7–6%). The Orinoquía region shows significant potential for SOC storage and reduced N2O emissions in improved pastures with deep root systems. Thus, scaling the implementation of land-based SOC storage practices/projects could significantly contribute to reducing net emissions from beef production from this region.

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3