Investigating Rainfall Patterns in the Hubei Province, China and Northern Italy During the Covid-19 Lockdowns

Author:

Sharif Ridwana Binte,Houser Paul,Aquila Valentina,Maggioni Viviana

Abstract

In the spring of 2020, many countries enacted strict lockdowns to contain the spread of the 2019 coronavirus disease (COVID-19), resulting in a sharp observed decrease in regional atmospheric pollutant concentrations, such as NOx and aerosols in early 2020. Atmospheric composition can influence cloud properties and might have a significant effect on the initiation of precipitation. This study investigated changes in precipitation patterns during COVID-19 lockdowns and compared them to patterns observed during the previous 19 years (2001 through 2019) across two regions of interest, the Hubei province in China and Northern Italy using a satellite-based precipitation dataset. Results indicated that overall rainfall averages were higher in the spring of 2020 with respect to their corresponding climatological means, with higher standard deviations especially in the more urbanized regions like Wuhan, China and Milan, Italy. Precipitation rates observed during the Spring of 2020 tend to fall outside of the climatological 25–75th percentile bounds. Similarly, the number of rainy pixels was in several cases in Spring 2020 higher than the climatological 75th percentile and sometimes even higher than the 95th one. These anomalies may be due to natural variations and may not be caused directly by the reduction in atmospheric pollutant concentrations. Nevertheless, our analysis proved that precipitation patterns during the lockdowns were on the extreme tails of the precipitation climatological distributions for both regions of interest. Lastly, decorrelation lags and distances in Northern Italy remained similar to their corresponding climatological values, whereas in the Hubei province some differences were observed, with the Spring 2020 spatial correlation variogram almost overlapping the climatological 5th percentile and with a decorrelation distance shorter than the climatological value.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3