The performance of solvent-based direct air capture across geospatial and temporal climate regimes

Author:

Brooks Bjørn-Gustaf J.,Geissler Caleb H.,An Keju,McCoy Sean T.,Middleton Richard S.,Ogland-Hand Jonathan D.

Abstract

IntroductionLiquid-solvent direct air capture (DAC) is a prominent approach for carbon dioxide removal but knowing where to site these systems is challenging because it requires considering a multitude of interrelated geospatial factors. Two of the most pressing factors are: (1) how should DAC be powered to provide the greatest net removal of CO2 and (2) how does weather impact its performance?.MethodsTo investigate these questions, this study develops a process-level model of a liquid-solvent DAC system and couples it to a 20-year dataset of temperature and humidity conditions at a ~9km resolution across the contiguous US.Results and discussionWe find that the amount of CO2 sequestered could be 30% to 50% greater than the amount of CO2 removed from the atmosphere if natural gas is burned on site to power DAC, but that the optimal way to power DAC is independent of capture rate (i.e., weather), depending solely on the upstream GHG intensity of electricity and natural gas. Regardless of how it is powered, air temperature and humidity conditions can change the performance of DAC by up to ~3x and can also vary substantially across weather years. Across the continuous US, we find that southern states (e.g., Gulf Coast) are preferrable locations for a variety of reasons, including higher and less variable air temperature and relative humidity. Lastly, we also find the performance of liquid-solvent DAC calculated with monthly means is within 2% of the estimated performance calculated with hourly data for more than a third of the country, including in the states with weather most favorable for liquid-solvent DAC.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3