Key drivers of vulnerability to rainfall flooding in New Orleans

Author:

Kane Patrick Bodilly,Tebyanian Nastaran,Gilles Daniel,McMann Brett,Fischbach Jordan R.

Abstract

IntroductionFuture urban stormwater flood risk is determined by the confluence of both climate-driven changes in precipitation patterns and the effectiveness of flood mitigation systems, such as urban drainage and pump systems. This is especially true in coastal cities protected by levee systems like New Orleans, where even present-day rainfall would be enough to cause serious flooding in the absence of extensive stormwater drainage and pumping. However, while the uncertainties associated with climate change have been well studied, uncertainties in infrastructure performance and operation have received less attention.MethodsWe investigated how these interrelated sets of uncertainties drive flood risk in New Orleans using a Robust Decision Making (RDM) approach. RDM is a framework for Decision Making Under Deep Uncertainty (DMDU) that leverages simulation models to facilitate exploration across many possible futures and the identification of decision-relevant scenarios. For our work, we leveraged a detailed Storm Water Management Model (SWMM) representation of the New Orleans urban stormwater management system to examine flood depths across the city when faced with different levels of future precipitation, sea-level rise, drainage pipe obstruction, and pumping system failure. We also estimated direct flood damage for each neighborhood in the city for this scenario ensemble. These damage estimates were then subjected to vulnerability analysis using scenario discovery—a technique designed to determine which combinations of uncertainties are most stressful to the system in terms of an outcome of interest (excess flood damage).ResultsOur results suggest that key drivers of vulnerability depend on geographic scale. Specifically, we find that possible climate-driven precipitation increases are the most important determinant of vulnerability at the citywide level. However, for some individual neighborhoods, infrastructure operation challenges under present day conditions are a more significant driver of vulnerability than possible climate-driven precipitation increases.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3