Changing the climate risk trajectory for coral reefs

Author:

Condie Scott A.

Abstract

Coral reefs are extremely vulnerable to climate change and their recent degradation will continue unless we can instigate strong global climate action with effective regional interventions. Many types of intervention have been proposed and some aspects of their deployment are now being tested. However, their long-term efficacy under climate change can only be evaluated using complex biophysical models applied over a range of plausible socio-economic pathways. The associated uncertainties in climate trajectories, ecological responses, and the mitigating effects of interventions, necessitate the use of a risk-based approach to evaluating model results. I show that ensemble modeling can be used to develop rigorous risk assessments suitable for comparing intervention strategies. A major strength of this approach is that all the key elements required for risk assessment (exposure, sensitivity, adaptive capacity, and impacts) can be generated by the model in a dynamically consistent form. This is a major advance on semi-quantitative climate change vulnerability risk assessments that estimate these quantities independently and then combine them under additional assumptions. Applying ensemble modeling risk assessment to the Great Barrier Reef (GBR) suggests that regional intervention strategies, such as solar radiation management (SRM) and control of coral predators, can slow the increase in risk and potentially avoid extreme risks predicted for the second half of the century. Model results further suggest that deployments focused within the northern and central GBR will be most effective due to underlying patterns of reef connectivity.

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3