New insights into the biennial-to-multidecadal variability of the water level fluctuation in Lake Titicaca in the 20th century

Author:

Sulca Juan,Apaéstegui James,Tacza José

Abstract

The water disponibility of Lake Titicaca is important for local ecosystems, domestic water, industry, fishing, agriculture, and tourism in Peru and Bolivia. However, the water level variability in Lake Titicaca (LTWL) still needs to be understood. The fluctuations of LTWL during the 1921–2018 period are investigated using continuous wavelet techniques on high- and low-pass filters of monthly time series, ERA-20C reanalysis, sea surface temperature (SST), and water level. We also built multiple linear regression (MLR) models based on SST indices to identify the main drivers of the LTWL variability. LTWL features annual (12 months), biennial (22–28 months), interannual (80–108 months), decadal (12.75–14.06 years), interdecadal (24.83–26.50 years), and multidecadal (30–65 years) signals. The high- and low-frequency components of the LTWL are triggered by the humidity transport from the lowland toward the Lake Titicaca basin, although different forcings could cause it. The biennial band is associated with SST anomalies over the southeastern tropical Atlantic Ocean that strengthen the Bolivian High-Nordeste Low system. The interannual band is associated with the southern South Atlantic SST anomalies, which modulate the position of the Bolivian High. According to the MLR models, the decadal and interdecadal components of the LTWL can be explained by the linear combination of the decadal and interdecadal variability of the Pacific and Atlantic SST anomalies (r > 0.83, p < 0.05). In contrast, the multidecadal component of the LTWL is driven by the multidecadal component of the North Atlantic SST anomalies (AMO) and the southern South Atlantic SST anomalies. Moreover, the monthly time series of LTWL exhibits four breakpoints. The signs of the first four trends follow the change of phases of the multidecadal component of LTWL, while the fifth trend is zero attributable to the diminished amplitude of the interdecadal component of LTWL.

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3