Carbon dioxide removal efficiency of iron and steel slag in seawater via ocean alkalinity enhancement

Author:

Moras Charly A.,Joannes-Boyau Renaud,Bach Lennart T.,Cyronak Tyler,Schulz Kai G.

Abstract

Ocean alkalinity enhancement (OAE) via the enhanced weathering of alkaline minerals is a promising carbon dioxide removal (CDR) technology. Theoretically, these includes iron and steel slags, although their dissolution kinetics in seawater are unknown. Here, we conducted lab-scale experiments to assess the alkalinity generation potential and dissolution kinetics of various slags in seawater. We show that the alkalinity generated per mass of iron slag was logarithmic, i.e., higher amounts of iron slag added had diminishing alkalinity returns. In contrast, the relatively quick dissolution of steel slags and their linear generation of alkalinity per mass of feedstock dissolved in seawater makes them better OAE candidates. Furthermore, despite the presence of potentially toxic metals in these feedstocks, their low to non-existent presence as dissolution products suggests that harmful concentrations should not be reached, at least for the slag tested here. Finally, if all steel slag produced annually was used for OAE, between 10 and 22 gigatonnes of CO2 could be captured cumulatively by 2,100, highlighting significant CDR potential by slags.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3