Effects of Current and Future Summer Marine Heat Waves on Posidonia oceanica: Plant Origin Matters?

Author:

Stipcich Patrizia,Marín-Guirao Lazaro,Pansini Arianna,Pinna Federico,Procaccini Gabriele,Pusceddu Antonio,Soru Santina,Ceccherelli Giulia

Abstract

Marine heat waves (MHWs), prolonged discrete anomalously warm water events, have been increasing significantly in duration, intensity and frequency all over the world, and have been associated with a variety of impacts including alteration of ecosystem structure and function. This study assessed the effects of current and future MHWs on the Mediterranean seagrass Posidonia oceanica performance, also testing the importance of the thermal environment where the plant lives. The effects of current MHWs were studied through a mensurative experiment in a cold and in a warm site (West and North-West Sardinia, Italy, respectively). Future MHWs effects were tested through a manipulative experiment using P. oceanica shoots collected from the cold and warm sites and transplanted in a common garden in front of a power plant (North-West Sardinia): here plants were exposed to heat longer in duration and stronger in intensity than the natural MHWs of the last 20 years, resembling the future scenario. Morphological (total # of leaves, maximum leaf length, and percentage of total necrotic leaf length per shoot) and biochemical variables (leaf proteins, carbohydrates, and lipids) were considered. Plants had similar sublethal responses in both the experiments for most of the variables, revealing that current and future MHWs had similar effect types, but different in magnitude depending on the intensity of the waves: in general, the number of leaves, the maximum leaf length and lipid content decreased, while the leaf necrosis and carbohydrates increased. However, also the origin of the plants affected the results, corroborating the hypothesis that the thermal context the plants live affects their tolerance to the heat. Overall, this study provided evidence about the importance of biochemical variations, such as carbohydrate and lipid levels, as potentially good indicators of seagrass heat stress.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3