Drivers and characteristics of the Indo-western Pacific Ocean capacitor

Author:

Du Yan,Chen Zesheng,Xie Shang-Ping,Zhang Lianyi,Zhang Ying,Cai Yinan

Abstract

Coherently coupled ocean-atmosphere variability of the tropical Indo-Pacific Oceans gives rise to the predictability of Asian summer climate. Recent advances in Indo-western Pacific Ocean capacitor (IPOC) theory and the relationship with El Niño-Southern Oscillation (ENSO) are reviewed. The IPOC features tropical Indian Ocean (TIO) warming and an anomalous anticyclonic circulation over the western North Pacific (WNPAAC), the latter driving water vapor transport to East Asia and causing extreme events, e.g., heavy rainfalls from central China to Japan during the boreal summer. IPOC events often occur in post-ENSO summers, but the significant TIO warming could sustain the WNPAAC without a strong El Niño, forced instead by a strong antecedent positive Indian Ocean Dipole (IOD). In latter cases, the Indian Ocean and WNP act as a self-sustaining system, independent of external forcings. El Niño or positive IOD induces the oceanic downwelling Rossby waves and thermocline warming in the southwest TIO, leading to SST warming and a “C-shaped” wind anomaly during winter and early spring. Furthermore, the southwest TIO downwelling Rossby waves reflect as oceanic Kelvin waves on the African coast. In the early summer, the resultant southeast TIO SST warming induces a second “C-shaped” wind anomaly. Both southwest and southeast TIO warming contribute to the WNPAAC. The WNPAAC modulates the water vapor pathways to East Asia in the late spring and summer, which mostly converge over the South China Sea and adjacent regions before flowing further to the north. More water vapor is transported from the western Pacific warm pool and less from the southern hemisphere and the Indian Ocean. The enhanced Asian Summer monsoon and moisture content lead to extreme rainfalls in central China and Japan during the boreal summer.

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

Reference162 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3