Propagation of an RNA Bacteriophage at Low Host Density Leads to a More Efficient Virus Entry

Author:

Laguna-Castro Mara,Lázaro Ester

Abstract

The successful spread of a virus in a specific ecological niche is largely determined by host availability. The lower the host density, the longer the virus spends in the external environment between successive infections, thus increasing its probability of degradation due to physical and chemical variables, which ultimately could lead to its extinction. Nevertheless, the high error rate of viral replication, particularly in the case of RNA viruses, can lead to the emergence and subsequent selection of mutants that increase their probability of transmission under unfavorable conditions. This fact could cause some containment measures, such as those based on restriction of contacts, to have unexpected consequences that it is important to analyze. Whereas it is quite difficult to implement this kind of studies during the spread of real epidemics, evolution experiments carried out with controlled variables in the lab can be very useful to unveil regularities in virus behavior that allow to anticipate difficulties. In this work we have carried out an evolution experiment in which the bacteriophage Qβ, a virus with an RNA genome, has been propagated at different host densities under conditions that prevent the selection of defense mechanisms in the bacteria. Our results show that there is a minimal host concentration that separates sustained propagation from extinction. After a certain number of generations, all lineages propagated at suboptimal host concentration selected a mutation in the minor capsid protein whose phenotypic effect was to enhance the entry of the virus into the cell. Although it is difficult to extrapolate our findings to more complex situations, they show the need to carry out an exhaustive monitoring of viral evolution when measures based on confinements or physical barriers that limit transmission are applied.

Funder

Agencia Estatal de Investigación

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3