Mycobiomes of the Ocular Surface in Bacterial Keratitis Patients

Author:

Jayasudha Rajagopalaboopathi,Chakravarthy Sama Kalyana,Prashanthi Gumpili Sai,Sharma Savitri,Garg Prashant,Murthy Somasheila I.,Shivaji Sisinthy

Abstract

Inflammation of the cornea is known as keratitis, and bacteria, fungi, protozoans, and viruses are the etiological agents of this disease. Delayed treatment of keratitis could result in loss of vision and, under certain severity conditions, the removal of an eye and its associated structures. In the current study, the ocular surface (conjunctiva and cornea) mycobiomes of individuals with bacterial keratitis were compared with the ocular mycobiome (conjunctiva) of healthy individuals, free of any ocular morbidity. Mycobiomes were generated through NGS approach using conjunctival swabs and corneal scrapings as the source of DNA from which ITS2 was amplified and sequenced, as a proxy to identify fungi. The results indicated significant changes in the alpha-diversity indices and in the abundance at the phylum and genera level. Hierarchical clustering using a heatmap showed that the mycobiomes were different. Furthermore, NMDS plots also differentiated the mycobiomes in the three cohorts, implying dysbiosis in the mycobiomes of the conjunctivae and corneal scrapings of bacterial keratitis individuals compared to control individuals. A preponderance of negative interactions in the hub genera in the conjunctival swabs of bacterial keratitis individuals compared to healthy controls further re-emphasized the differences in the mycobiomes. The dysbiotic changes at the genera level in conjunctivae and corneal scrapings of bacterial keratitis individuals are discussed with respect to their possible role in causing or exacerbating ocular surface inflammation. These results demonstrate dysbiosis in the ocular mycobiome in bacterial keratitis patients compared to healthy controls for the first time.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3