Threat modelling in Internet of Things (IoT) environments using dynamic attack graphs

Author:

Salayma Marwa

Abstract

This work presents a threat modelling approach to represent changes to the attack paths through an Internet of Things (IoT) environment when the environment changes dynamically, that is, when new devices are added or removed from the system or when whole sub-systems join or leave. The proposed approach investigates the propagation of threats using attack graphs, a popular attack modelling method. However, traditional attack-graph approaches have been applied in static environments that do not continuously change, such as enterprise networks, leading to static and usually very large attack graphs. In contrast, IoT environments are often characterised by dynamic change and interconnections; different topologies for different systems may interconnect with each other dynamically and outside the operator’s control. Such new interconnections lead to changes in the reachability amongst devices according to which their corresponding attack graphs change. This requires dynamic topology and attack graphs for threat and risk analysis. This article introduces an example scenario based on healthcare systems to motivate the work and illustrate the proposed approach. The proposed approach is implemented using a graph database management tool (GDBM), Neo4j, which is a popular tool for mapping, visualising, and querying the graphs of highly connected data. It is efficient in providing a rapid threat modelling mechanism, making it suitable for capturing security changes in the dynamic IoT environment. Our results show that our developed threat modelling approach copes with dynamic system changes that may occur in IoT environments and enables identifying attack paths, whilst allowing for system dynamics. The developed dynamic topology and attack graphs can cope with the changes in the IoT environment efficiently and rapidly by maintaining their associated graphs.

Publisher

Frontiers Media SA

Reference41 articles.

1. Deployment optimization of iot devices through attack graph analysis;Agmon,2019

2. A review on attack graph analysis for iot vulnerability assessment: challenges, open issues, and future directions;Almazrouei;IEEE Access,2023

3. A graph data model for attack graph generation and analysis;Barik,2014

4. Network vulnerability analysis using a constrained graph data model;Barik

5. Attack graph generation and analysis techniques;Barik;Def. Sci. J.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3