Adversarial robustness in deep neural networks based on variable attributes of the stochastic ensemble model

Author:

Qin Ruoxi,Wang Linyuan,Du Xuehui,Xie Pengfei,Chen Xingyuan,Yan Bin

Abstract

Deep neural networks (DNNs) have been shown to be susceptible to critical vulnerabilities when attacked by adversarial samples. This has prompted the development of attack and defense strategies similar to those used in cyberspace security. The dependence of such strategies on attack and defense mechanisms makes the associated algorithms on both sides appear as closely processes, with the defense method being particularly passive in these processes. Inspired by the dynamic defense approach proposed in cyberspace to address endless arm races, this article defines ensemble quantity, network structure, and smoothing parameters as variable ensemble attributes and proposes a stochastic ensemble strategy based on heterogeneous and redundant sub-models. The proposed method introduces the diversity and randomness characteristic of deep neural networks to alter the fixed correspondence gradient between input and output. The unpredictability and diversity of the gradients make it more difficult for attackers to directly implement white-box attacks, helping to address the extreme transferability and vulnerability of ensemble models under white-box attacks. Experimental comparison of ASR-vs.-distortion curves with different attack scenarios under CIFAR10 preliminarily demonstrates the effectiveness of the proposed method that even the highest-capacity attacker cannot easily outperform the attack success rate associated with the ensemble smoothed model, especially for untargeted attacks.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference53 articles.

1. Threat of adversarial attacks on deep learning in computer vision: a survey;Akhtar;IEEE Access,2018

2. “Synthesizing robust adversarial examples,”;Athalye,2018

3. “A game theoretic approach to model cyber attack and defense strategies,”;Attiah,2018

4. “Understanding dropout,”;Baldi;Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013,2013

5. End to end learning for self-driving cars BojarskiM. TestaD. D. DworakowskiD. FirnerB. FleppB. GoyalP. arXiv [Preprint].2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3