Grounding Context in Embodied Cognitive Robotics

Author:

Valenzo Diana,Ciria Alejandra,Schillaci Guido,Lara Bruno

Abstract

Biological agents are context-dependent systems that exhibit behavioral flexibility. The internal and external information agents process, their actions, and emotions are all grounded in the context within which they are situated. However, in the field of cognitive robotics, the concept of context is far from being clear with most studies making little to no reference to it. The aim of this paper is to provide an interpretation of the notion of context and its core elements based on different studies in natural agents, and how these core contextual elements have been modeled in cognitive robotics, to introduce a new hypothesis about the interactions between these contextual elements. Here, global context is categorized as agent-related, environmental, and task-related context. The interaction of their core elements, allows agents to first select self-relevant tasks depending on their current needs, or for learning and mastering their environment through exploration. Second, to perform a task and continuously monitor its performance. Third, to abandon a task in case its execution is not going as expected. Here, the monitoring of prediction error, the difference between sensorimotor predictions and incoming sensory information, is at the core of behavioral flexibility during situated action cycles. Additionally, monitoring prediction error dynamics and its comparison with the expected reduction rate should indicate the agent its overall performance on executing the task. Sensitivity to performance evokes emotions that function as the driving element for autonomous behavior which, at the same time, depends on the processing of the interacting core elements. Taking all these into account, an interactionist model of contexts and their core elements is proposed. The model is embodied, affective, and situated, by means of the processing of the agent-related and environmental core contextual elements. Additionally, it is grounded in the processing of the task-related context and the associated situated action cycles during task execution. Finally, the model proposed here aims to guide how artificial agents should process the core contextual elements of the agent-related and environmental context to give rise to the task-related context, allowing agents to autonomously select a task, its planning, execution, and monitoring for behavioral flexibility.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference229 articles.

1. Vision-based mobile robot controllers: a scientific review;Adnan Mohsin Abdulazeez;Turk. J. Comput. Math. Educ,2021

2. How should neuroscience study emotions? by distinguishing emotion states, concepts, and experiences;Adolphs;Soc. Cogn. Affect. Neurosci,2016

3. Population spatial frequency tuning in human early visual cortex;Aghajari;J. Neurophysiol,2020

4. Emotions: from brain to robot;Arbib;Trends Cogn. Sci,2004

5. Rethinking autonomy of humans and robots;Asada;J. Artif. Intell. Consciousness,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3