Online detection of compensatory strategies in human movement with supervised classification: a pilot study

Author:

Das Neha,Endo Satoshi,Patel Sabrina,Krewer Carmen,Hirche Sandra

Abstract

IntroductionStroke survivors often compensate for the loss of motor function in their distal joints by altered use of more proximal joints and body segments. Since this can be detrimental to the rehabilitation process in the long-term, it is imperative that such movements are indicated to the patients and their caregiver. This is a difficult task since compensation strategies are varied and multi-faceted. Recent works that have focused on supervised machine learning methods for compensation detection often require a large training dataset of motions with compensation location annotations for each time-step of the recorded motion. In contrast, this study proposed a novel approach that learned a linear classifier from energy-based features to discriminate between healthy and compensatory movements and identify the compensating joints without the need for dense and explicit annotations.MethodsSix healthy physiotherapists performed five different tasks using healthy movements and acted compensations. The resulting motion capture data was transformed into joint kinematic and dynamic trajectories. Inspired by works in bio-mechanics, energy-based features were extracted from this dataset. Support vector machine (SVM) and logistic regression (LR) algorithms were then applied for detection of compensatory movements. For compensating joint identification, an additional condition enforcing the independence of the feature calculation for each observable degree of freedom was imposed.ResultsUsing leave-one-out cross validation, low values of mean brier score (<0.15), mis-classification rate (<0.2) and false discovery rate (<0.2) were obtained for both SVM and LR classifiers. These methods were found to outperform deep learning classifiers that did not use energy-based features. Additionally, online classification performance by our methods were also shown to outperform deep learning baselines. Furthermore, qualitative results obtained from the compensation joint identification experiment indicated that the method could successfully identify compensating joints.DiscussionResults from this study indicated that including prior bio-mechanical information in the form of energy based features can improve classification performance even when linear classifiers are used, both for offline and online classification. Furthermore, evaluation compensation joint identification algorithm indicated that it could potentially provide a straightforward and interpretable way of identifying compensating joints, as well as the degree of compensation being performed.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3