Autonomous maneuver decision-making method based on reinforcement learning and Monte Carlo tree search

Author:

Zhang Hongpeng,Zhou Huan,Wei Yujie,Huang Changqiang

Abstract

Autonomous maneuver decision-making methods for air combat often rely on human knowledge, such as advantage functions, objective functions, or dense rewards in reinforcement learning, which limits the decision-making ability of unmanned combat aerial vehicle to the scope of human experience and result in slow progress in maneuver decision-making. Therefore, a maneuver decision-making method based on deep reinforcement learning and Monte Carlo tree search is proposed to investigate whether it is feasible for maneuver decision-making without human knowledge or advantage function. To this end, Monte Carlo tree search in continuous action space is proposed and neural networks-guided Monte Carlo tree search with self-play is utilized to improve the ability of air combat agents. It starts from random behaviors and generates samples consisting of states, actions, and results of air combat through self-play without using human knowledge. These samples are used to train the neural network, and the neural network with a greater winning rate is selected by simulations. Then, repeat the above process to gradually improve the maneuver decision-making ability. Simulations are conducted to verify the effectiveness of the proposed method, and the kinematic model of the missile is used in simulations instead of the missile engagement zone to test whether the maneuver decision-making method is effective or not. The simulation results of the fixed initial state and random initial state show that the proposed method is efficient and can meet the real-time requirement.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference40 articles.

1. Learning to play chess using temporal differences;Baxter;Mach. Learn,2000

2. Maneuvering decision in air combat based on multi-objective optimization and reinforcement learning;Du;J. Beij. Uni. Aero. Astronau,2018

3. “A differential game approach for beyond visual range tactics,”;Eloy;2021 American Control Conference,2020

4. Background interpolation for on-line situation of capture zone of air-to-air missiles;Fang;J. Syst. Eng. Electron,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3