Fine-grained image classification method based on hybrid attention module

Author:

Lu Weixiang,Yang Ying,Yang Lei

Abstract

To efficiently capture feature information in tasks of fine-grained image classification, this study introduces a new network model for fine-grained image classification, which utilizes a hybrid attention approach. The model is built upon a hybrid attention module (MA), and with the assistance of the attention erasure module (EA), it can adaptively enhance the prominent areas in the image and capture more detailed image information. Specifically, for tasks involving fine-grained image classification, this study designs an attention module capable of applying the attention mechanism to both the channel and spatial dimensions. This highlights the important regions and key feature channels in the image, allowing for the extraction of distinct local features. Furthermore, this study presents an attention erasure module (EA) that can remove significant areas in the image based on the features identified; thus, shifting focus to additional feature details within the image and improving the diversity and completeness of the features. Moreover, this study enhances the pooling layer of ResNet50 to augment the perceptual region and the capability to extract features from the network’s less deep layers. For the objective of fine-grained image classification, this study extracts a variety of features and merges them effectively to create the final feature representation. To assess the effectiveness of the proposed model, experiments were conducted on three publicly available fine-grained image classification datasets: Stanford Cars, FGVC-Aircraft, and CUB-200–2011. The method achieved classification accuracies of 92.8, 94.0, and 88.2% on these datasets, respectively. In comparison with existing approaches, the efficiency of this method has significantly improved, demonstrating higher accuracy and robustness.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3