Palmprint recognition based on gating mechanism and adaptive feature fusion

Author:

Zhang Kaibi,Xu Guofeng,Jin Ye Kelly,Qi Guanqiu,Yang Xun,Bai Litao

Abstract

As a type of biometric recognition, palmprint recognition uses unique discriminative features on the palm of a person to identify his/her identity. It has attracted much attention because of its advantages of contactlessness, stability, and security. Recently, many palmprint recognition methods based on convolutional neural networks (CNN) have been proposed in academia. Convolutional neural networks are limited by the size of the convolutional kernel and lack the ability to extract global information of palmprints. This paper proposes a framework based on the integration of CNN and Transformer-GLGAnet for palmprint recognition, which can take advantage of CNN's local information extraction and Transformer's global modeling capabilities. A gating mechanism and an adaptive feature fusion module are also designed for palmprint feature extraction. The gating mechanism filters features by a feature selection algorithm and the adaptive feature fusion module fuses them with the features extracted by the backbone network. Through extensive experiments on two datasets, the experimental results show that the recognition accuracy is 98.5% for 12,000 palmprints in the Tongji University dataset and 99.5% for 600 palmprints in the Hong Kong Polytechnic University dataset. This demonstrates that the proposed method outperforms existing methods in the correctness of both palmprint recognition tasks. The source codes will be available on https://github.com/Ywatery/GLnet.git.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference51 articles.

1. A contactless palmprint biometric system based on CNN;Alrahawe;Turkish J. Comput. Math. Educ,2021

2. “Contactless palmprint recognition based on convolutional neural network,”;Dian;2016 IEEE 13th International Conference on Signal Processing (ICSP),2016

3. Feature extraction methods for palmprint recognition: a survey and evaluation;Fei;IEEE Trans. Syst. Man Cybern,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3