Machine unlearning in brain-inspired neural network paradigms

Author:

Wang Chaoyi,Ying Zuobin,Pan Zijie

Abstract

Machine unlearning, which is crucial for data privacy and regulatory compliance, involves the selective removal of specific information from a machine learning model. This study focuses on implementing machine unlearning in Spiking Neuron Models (SNMs) that closely mimic biological neural network behaviors, aiming to enhance both flexibility and ethical compliance of AI models. We introduce a novel hybrid approach for machine unlearning in SNMs, which combines selective synaptic retraining, synaptic pruning, and adaptive neuron thresholding. This methodology is designed to effectively eliminate targeted information while preserving the overall integrity and performance of the neural network. Extensive experiments were conducted on various computer vision datasets to assess the impact of machine unlearning on critical performance metrics such as accuracy, precision, recall, and ROC AUC. Our findings indicate that the hybrid approach not only maintains but in some cases enhances the neural network's performance post-unlearning. The results confirm the practicality and efficiency of our approach, underscoring its applicability in real-world AI systems.

Funder

Fundo para o Desenvolvimento das Ciências e da Tecnologia

Publisher

Frontiers Media SA

Reference35 articles.

1. A survey of encoding techniques for signal processing in spiking neural networks;Auge;Neural Process. Lett,2021

2. Online spatio-temporal learning in deep neural networks;Bohnstingl;CoRR, abs/2007.12723,2020

3. “Machine unlearning,”;Bourtoule,2021

4. “Efficient repair of polluted machine learning systems via causal unlearning,”;Cao,2018

5. “Resource constrained model compression via minimax optimization for spiking neural networks,”;Chen;Proceedings of the 31st ACM International Conference on Multimedia, MM 2023, Ottawa, ON, Canada,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3