Miniature Autonomy as Means to Find New Approaches in Reliable Autonomous Driving AI Method Design

Author:

Tiedemann Tim,Schwalb Luk,Kasten Markus,Grotkasten Robin,Pareigis Stephan

Abstract

Artificial Intelligence (AI) methods need to be evaluated thoroughly to ensure reliable behavior. In applications like autonomous driving, a complex environment with an uncountable number of different situations and conditions needs to be handled by a method whose behavior needs to be predictable. To accomplish this, simulations can be used as a first step. However, the physical world behaves differently, as the example of autonomous driving shows. There, erroneous behavior has been found in test drives that was not noticed in simulations. Errors were caused by conditions or situations that were not covered by the simulations (e.g., specific lighting conditions or other vehicle's behavior). However, the problem with real world testing of autonomous driving features is that critical conditions or situations occur very rarely—while the test effort is high. A solution can be the combination of physical world tests and simulations—and miniature vehicles as an intermediate step between both. With model cars (in a sufficiently complex model environment) advantages of both can be combined: (1) low test effort and a repeatable variation of conditions/situations as an advantage like in simulations and (2) (limited) physical world testing with unspecified and potentially unknown properties as an advantage like in real-world tests. Additionally, such physical tests can be carried out in less stable cases like already in the early stages of AI method testing and/or in approaches using online learning. Now, we propose to use a) miniature vehicles at a small scale of 1:87 and b) use sensors and computational power only on the vehicle itself. By this limitation, a further consequence is expected: Here, autonomy methods need to be optimized drastically or even redesigned from scratch. The resulting methods are supposed to be less complex—and, thus, again less error-prone. We call this approach “Miniature Autonomy” and apply it to the road, water, and aerial vehicles. In this article, we briefly describe a small test area we built (3 sqm.), a large test area used alternatively (1,545 sqm.), two last generation autonomous miniature vehicles (one road, one aerial vehicle), and an autonomous driving demo case demonstrating the application.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference20 articles.

1. BurauH. MangM. NaumannF. SchnirpelT. StarkF. Ms Nhawigatora. 5th Semester Project, Department of Computer Science, AutoSys Group, HAW Hamburg2019

2. 2021

3. “The cityscapes dataset for semantic urban scene understanding,”;Cordts,2016

4. “Rethinking bisenet for real-time semantic segmentation,”;Fan,2021

5. Miniaturized advanced driver assistance systems: a low-cost educational platform for advanced driver assistance systems and autonomous driving;Gerstmair;IEEE Signal. Process. Mag,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3