3D network with channel excitation and knowledge distillation for action recognition

Author:

Hu Zhengping,Mao Jianzeng,Yao Jianxin,Bi Shuai

Abstract

Modern action recognition techniques frequently employ two networks: the spatial stream, which accepts input from RGB frames, and the temporal stream, which accepts input from optical flow. Recent researches use 3D convolutional neural networks that employ spatiotemporal filters on both streams. Although mixing flow with RGB enhances performance, correct optical flow computation is expensive and adds delay to action recognition. In this study, we present a method for training a 3D CNN using RGB frames that replicates the motion stream and, as a result, does not require flow calculation during testing. To begin, in contrast to the SE block, we suggest a channel excitation module (CE module). Experiments have shown that the CE module can improve the feature extraction capabilities of a 3D network and that the effect is superior to the SE block. Second, for action recognition training, we adopt a linear mix of loss based on knowledge distillation and standard cross-entropy loss to effectively leverage appearance and motion information. The Intensified Motion RGB Stream is the stream trained with this combined loss (IMRS). IMRS surpasses RGB or Flow as a single stream; for example, HMDB51 achieves 73.5% accuracy, while RGB and Flow streams score 65.6% and 69.1% accuracy, respectively. Extensive experiments confirm the effectiveness of our proposed method. The comparison with other models proves that our model has good competitiveness in behavior recognition.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference45 articles.

1. “Quo vadis, action recognition? A new model and the kinetics dataset,”;Carreira,2017

2. “Two-stream video classification with cross-modality attention,”;Chi,2019

3. “MARS: motion-augmented RGB stream for action recognition,”;Crasto,2019

4. Forecasting action through contact representations from first person video;Dessalene;IEEE Transactions on Pattern Analysis and Machine Intelligence PP,2021

5. “Spatio-temporal channel correlation networks for action classification,”;Diba,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DILS: depth incremental learning strategy;Frontiers in Neurorobotics;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3