Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition

Author:

Yang Huaigang,Ren Ziliang,Yuan Huaqiang,Wei Wenhong,Zhang Qieshi,Zhang Zhaolong

Abstract

Graph convolution networks (GCNs) have been widely used in the field of skeleton-based human action recognition. However, it is still difficult to improve recognition performance and reduce parameter complexity. In this paper, a novel multi-scale attention spatiotemporal GCN (MSA-STGCN) is proposed for human violence action recognition by learning spatiotemporal features from four different skeleton modality variants. Firstly, the original joint data are preprocessed to obtain joint position, bone vector, joint motion and bone motion datas as inputs of recognition framework. Then, a spatial multi-scale graph convolution network based on the attention mechanism is constructed to obtain the spatial features from joint nodes, while a temporal graph convolution network in the form of hybrid dilation convolution is designed to enlarge the receptive field of the feature map and capture multi-scale context information. Finally, the specific relationship in the different skeleton data is explored by fusing the information of multi-stream related to human joints and bones. To evaluate the performance of the proposed MSA-STGCN, a skeleton violence action dataset: Filtered NTU RGB+D was constructed based on NTU RGB+D120. We conducted experiments on constructed Filtered NTU RGB+D and Kinetics Skeleton 400 datasets to verify the performance of the proposed recognition framework. The proposed method achieves an accuracy of 95.3% on the Filtered NTU RGB+D with the parameters 1.21M, and an accuracy of 36.2% (Top-1) and 58.5% (Top-5) on the Kinetics Skeleton 400, respectively. The experimental results on these two skeleton datasets show that the proposed recognition framework can effectively recognize violence actions without adding parameters.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference48 articles.

1. Skeleton image representation for 3D action recognition based on tree structure and reference joints,;Caetano

2. Skelemotion: a new representation of skeleton joint sequences based on motion information for 3D action recognition,;Caetano

3. Body joint guided 3-d deep convolutional descriptors for action recognition;Cao;IEEE Trans. Cybern,2018

4. Openpose: realtime multi-person 2D pose estimation using part affinity fields;Cao;IEEE Trans. Pattern Anal. Mach. Intell,2021

5. Quo vadis, action recognition? a new model and the kinetics dataset,;Carreira,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3