Cross Task Modality Alignment Network for Sketch Face Recognition

Author:

Guo Yanan,Cao Lin,Du Kangning

Abstract

The task of sketch face recognition refers to matching cross-modality facial images from sketch to photo, which is widely applied in the criminal investigation area. Existing works aim to bridge the cross-modality gap by inter-modality feature alignment approaches, however, the small sample problem has received much less attention, resulting in limited performance. In this paper, an effective Cross Task Modality Alignment Network (CTMAN) is proposed for sketch face recognition. To address the small sample problem, a meta learning training episode strategy is first introduced to mimic few-shot tasks. Based on the episode strategy, a two-stream network termed modality alignment embedding learning is used to capture more modality-specific and modality-sharable features, meanwhile, two cross task memory mechanisms are proposed to collect sufficient negative features to further improve the feature learning. Finally, a cross task modality alignment loss is proposed to capture modality-related information of cross task features for more effective training. Extensive experiments are conducted to validate the superiority of the CTMAN, which significantly outperforms state-of-the-art methods on the UoM-SGFSv2 set A, set B, CUFSF, and PRIP-VSGC dataset.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference54 articles.

1. On matching sketches with digital face images;Bhatt;Fourth IEEE International Conference on Biometrics: Theory Applications and Systems,2010

2. Super-resolution through neighbor embedding;Chang;IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2004

3. A baseline for few-shot image classification;Dhillon;arXiv preprint arXiv:1909.02729,2019

4. Siamese graph convolution network for face sketch recognition: an application using graph structure for face photo-sketch recognition;Fan;International Conference on Pattern Recognition,2020

5. Cross-modality multi-task deep metric learning for sketch face recognition;Feng;2019 Chinese Automation Congress,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3