Control of a Robotic Arm With an Optimized Common Template-Based CCA Method for SSVEP-Based BCI

Author:

Peng Fang,Li Ming,Zhao Su-na,Xu Qinyi,Xu Jiajun,Wu Haozhen

Abstract

Recently, the robotic arm control system based on a brain-computer interface (BCI) has been employed to help the disabilities to improve their interaction abilities without body movement. However, it's the main challenge to implement the desired task by a robotic arm in a three-dimensional (3D) space because of the instability of electroencephalogram (EEG) signals and the interference by the spontaneous EEG activities. Moreover, the free motion control of a manipulator in 3D space is a complicated operation that requires more output commands and higher accuracy for brain activity recognition. Based on the above, a steady-state visual evoked potential (SSVEP)-based synchronous BCI system with six stimulus targets was designed to realize the motion control function of the seven degrees of freedom (7-DOF) robotic arm. Meanwhile, a novel template-based method, which builds the optimized common templates (OCTs) from various subjects and learns spatial filters from the common templates and the multichannel EEG signal, was applied to enhance the SSVEP recognition accuracy, called OCT-based canonical correlation analysis (OCT-CCA). The comparison results of offline experimental based on a public benchmark dataset indicated that the proposed OCT-CCA method achieved significant improvement of detection accuracy in contrast to CCA and individual template-based CCA (IT-CCA), especially using a short data length. In the end, online experiments with five healthy subjects were implemented for achieving the manipulator real-time control system. The results showed that all five subjects can accomplish the tasks of controlling the manipulator to reach the designated position in the 3D space independently.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VR-SSVEPeripheral: Designing Virtual Reality Friendly SSVEP Stimuli using Peripheral Vision Area for Immersive and Comfortable Experience;Extended Abstracts of the CHI Conference on Human Factors in Computing Systems;2024-05-02

2. Optimized FFNN with multichannel CSP-ICA framework of EEG signal for BCI;Computer Methods in Biomechanics and Biomedical Engineering;2024-02-26

3. Control of the robotic arm system with an SSVEP-based BCI;Measurement Science and Technology;2024-02-13

4. EEG-controlled tele-grasping for undefined objects;Frontiers in Neurorobotics;2023-12-19

5. Improving CCA Algorithms on SSVEP Classification with Reinforcement Learning Based Temporal Filtering;Lecture Notes in Computer Science;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3