Post-silicon nano-electronic device and its application in brain-inspired chips

Author:

Lv Yi,Chen Houpeng,Wang Qian,Li Xi,Xie Chenchen,Song Zhitang

Abstract

As information technology is moving toward the era of big data, the traditional Von-Neumann architecture shows limitations in performance. The field of computing has already struggled with the latency and bandwidth required to access memory (“the memory wall”) and energy dissipation (“the power wall”). These challenging issues, such as “the memory bottleneck,” call for significant research investments to develop a new architecture for the next generation of computing systems. Brain-inspired computing is a new computing architecture providing a method of high energy efficiency and high real-time performance for artificial intelligence computing. Brain-inspired neural network system is based on neuron and synapse. The memristive device has been proposed as an artificial synapse for creating neuromorphic computer applications. In this study, post-silicon nano-electronic device and its application in brain-inspired chips are surveyed. First, we introduce the development of neural networks and review the current typical brain-inspired chips, including brain-inspired chips dominated by analog circuit and brain-inspired chips of the full-digital circuit, leading to the design of brain-inspired chips based on post-silicon nano-electronic device. Then, through the analysis of N kinds of post-silicon nano-electronic devices, the research progress of constructing brain-inspired chips using post-silicon nano-electronic device is expounded. Lastly, the future of building brain-inspired chips based on post-silicon nano-electronic device has been prospected.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference83 articles.

1. High-precision tuning of state for memristive devices by adaptable variation-tolerant algorithm;Alibart;Nanotechnology,2011

2. “Inherently stochastic spiking neurons for probabilistic neural computation,”;Al-Shedivat;2015 7th International IEEE/Embs Conference on Neural Engineering (NER),2015

3. Neural correlations, population coding and computation;Averbeck;Nat. Rev. Neurosci.,2006

4. “Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations,”;Benjamin;Proceedings of the IEEE,2014

5. “Emerging memory technology perspective,”;Bez;Proceedings of Technical Program of 2012 VLSI Technology, System and Application, Hsinchu, Taiwan,2012

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3