Attention-Guided Multi-Scale Feature Fusion Network for Low-Light Image Enhancement

Author:

Cui HengShuai,Li Jinjiang,Hua Zhen,Fan Linwei

Abstract

Low-light image enhancement has been an important research branch in the field of computer vision. Low-light images are characterized by poor visibility, high noise and low contrast. To improve low-light images generated in low-light environments and night conditions, we propose an Attention-Guided Multi-scale feature fusion network (MSFFNet) for low-light image enhancement for enhancing the contrast and brightness of low-light images. First, to avoid the high cost computation arising from the stacking of multiple sub-networks, our network uses a single encoder and decoder for multi-scale input and output images. Multi-scale input images can make up for the lack of pixel information and loss of feature map information caused by a single input image. The multi-scale output image can effectively monitor the error loss in the image reconstruction process. Second, the Convolutional Block Attention Module (CBAM) is introduced in the encoder part to effectively suppress the noise and color difference generated during feature extraction and further guide the network to refine the color features. Feature calibration module (FCM) is introduced in the decoder section to enhance the mapping expression between channels. Attention fusion module (AFM) is also added to capture contextual information, which is more conducive to recovering image detail information. Last, the cascade fusion module (CFM) is introduced to effectively combine the feature map information under different perceptual fields. Sufficient qualitative and quantitative experiments have been conducted on a variety of publicly available datasets, and the proposed MSFFNet outperforms other low-light enhancement methods in terms of visual effects and metric scores.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference62 articles.

1. A dynamic histogram equalization for image contrast enhancement;Abdullah-Al-Wadud;IEEE Trans. Consum. Electron,2007

2. Nighttime image enhancement using a new illumination boost algorithm;Al-Ameen;Image Process. IET,2019

3. Exponential entropy driven hum on knee mr images;Ardizzone,2006

4. Bias artifact suppression on mr volumes;Ardizzone;Comput. Methods Progr. Biomed,2008

5. Rank analysis of incomplete block designs: I. the method of paired comparisons;Bradley;Biometrika,1952

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3