Odor source localization of multi-robots with swarm intelligence algorithms: A review

Author:

Wang Junhan,Lin Yuezhang,Liu Ruirui,Fu Jun

Abstract

The use of robot swarms for odor source localization (OSL) can better adapt to the reality of unstable turbulence and find chemical contamination or hazard sources faster. Inspired by the collective behavior in nature, swarm intelligence (SI) is recognized as an appropriate algorithm framework for multi-robot system due to its parallelism, scalability and robustness. Applications of SI-based multi-robots for OSL problems have attracted great interest over the last two decades. In this review, we firstly summarize the trending issues in general robot OSL field through comparing some basic counterpart concepts, and then provide a detailed survey of various representative SI algorithms in multi-robot system for odor source localization. The research field originates from the first introduction of the standard particle swarm optimization (PSO) and flourishes in applying ever-increasing quantity of its variants as modified PSOs and hybrid PSOs. Moreover, other nature-inspired SI algorithms have also demonstrated the diversity and exploration of this field. The computer simulations and real-world applications reported in the literatures show that those algorithms could well solve the main problems of odor source localization but still retain the potential for further development. Lastly, we provide an outlook on possible future research directions.

Funder

National Natural Science Foundation of China

Zhejiang Xinmiao Talents Program

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Odor source localization in outdoor building environments through distributed cooperative control of a fleetof UAVs;Expert Systems with Applications;2024-08

2. Bout-based Gas Source Localization using Aerial Robot Swarms;2023 IEEE SENSORS;2023-10-29

3. Performance Evaluation of PSO and its Variants for Odor Source Localization;2023 3rd International Conference on Innovative Sustainable Computational Technologies (CISCT);2023-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3