An immediate-return reinforcement learning for the atypical Markov decision processes

Author:

Pan Zebang,Wen Guilin,Tan Zhao,Yin Shan,Hu Xiaoyan

Abstract

The atypical Markov decision processes (MDPs) are decision-making for maximizing the immediate returns in only one state transition. Many complex dynamic problems can be regarded as the atypical MDPs, e.g., football trajectory control, approximations of the compound Poincaré maps, and parameter identification. However, existing deep reinforcement learning (RL) algorithms are designed to maximize long-term returns, causing a waste of computing resources when applied in the atypical MDPs. These existing algorithms are also limited by the estimation error of the value function, leading to a poor policy. To solve such limitations, this paper proposes an immediate-return algorithm for the atypical MDPs with continuous action space by designing an unbiased and low variance target Q-value and a simplified network framework. Then, two examples of atypical MDPs considering the uncertainty are presented to illustrate the performance of the proposed algorithm, i.e., passing the football to a moving player and chipping the football over the human wall. Compared with the existing deep RL algorithms, such as deep deterministic policy gradient and proximal policy optimization, the proposed algorithm shows significant advantages in learning efficiency, the effective rate of control, and computing resource usage.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference38 articles.

1. A Markovian decision process;Bellman;J. Mathem. Mech.,1957

2. Multi-objectivization and ensembles of shapings in reinforcement learning;Brys;Neurocomputing,2017

3. Deep reinforcement learning based trajectory planning under uncertain constraints;Chen;Front. Neurorob,2022

4. Reinforcement learning and the reward engineering principle;Dewey;2014 AAAI Spring Symposium Series,2014

5. Maximal sprinting speed of elite soccer players during training and matches;Djaoui;J. Strength Condit. Res,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3