Feature fusion network based on few-shot fine-grained classification

Author:

Yang Yajie,Feng Yuxuan,Zhu Li,Fu Haitao,Pan Xin,Jin Chenlei

Abstract

The objective of few-shot fine-grained learning is to identify subclasses within a primary class using a limited number of labeled samples. However, many current methodologies rely on the metric of singular feature, which is either global or local. In fine-grained image classification tasks, where the inter-class distance is small and the intra-class distance is big, relying on a singular similarity measurement can lead to the omission of either inter-class or intra-class information. We delve into inter-class information through global measures and tap into intra-class information via local measures. In this study, we introduce the Feature Fusion Similarity Network (FFSNet). This model employs global measures to accentuate the differences between classes, while utilizing local measures to consolidate intra-class data. Such an approach enables the model to learn features characterized by enlarge inter-class distances and reduce intra-class distances, even with a limited dataset of fine-grained images. Consequently, this greatly enhances the model's generalization capabilities. Our experimental results demonstrated that the proposed paradigm stands its ground against state-of-the-art models across multiple established fine-grained image benchmark datasets.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference43 articles.

1. The devil is in the channels: mutual-channel loss for fine-grained image classification;Chang;IEEE Trans. Image Process,2020

2. A closer look at few-shot classification;Chen;arXiv,2020

3. “ImageNet: a large-scale hierarchical image database,”;Deng,2009

4. “Diversity with cooperation: ensemble methods for few-shot classification,”;Dvornik,2019

5. “Model-agnostic meta-learning for fast adaptation of deep networks,”;Finn;International Conference on Machine Learning,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3